
THE THERMAL CONDUCTIVITY OF GRANULAR AND 

WEAKLY SINTERED MATERIALS 

G. N. Dul'nev, Yu. P. Zarichnyak, 

and B. L. Muratova 

UDC 536.2 

We propose a new stable model of a granular or sintered material in a form with a second- 

order structure, with mutually penetrating components. We derive the functional relation- 

ships for the calculation of the coefficients of generalized conductivity* for the granular and 

sintered materials. 

i. Discussion of the Need for the Construction of a 

New Model of Granular Systems 

Numerous books, surveyed in [1-6], have been devoted to a study of the process of heat transfer in 

granular systems. The adequacy of the physical model and of the real system are usually evaluated on the 

basis of the extent to which the calculation results coincide with the experimental data. However, agree- 

ment with experiment, despite its value, is by no means a definitive criterion for the quality of a given 

model or calculation scheme, since the comparison is not always sufficiently extensive to cover the entire 

possible range of variation in the significant parameters. The testing of any given formula by other re- 

searchers with different materials in another range of variation for the determining parameters, on 

occasion, reveals substantial differences between the calculation results and those of the experiment. 

Satisfactory agreement in limited comparison with experiment may be a random occurrence, or it 
may be explained by the mutually offsetting effect of individual defects within the model, or it may be a 

consequence of an inaccuracy in the mathematical conversions. In addition to comparing the calculation 

results with the experiment -an absolutely mandatory requirement -we should devote some attention to 

the internal adequacy of the model. With regard to granular systems, the internal adequacy of the model ap- 

parently should be understood to refer to the extent to which the model corresponds to the real structure 
of the system, its physical stability, and its isotropicity. 

One method of determining the internal adequacy of a model is the testing of the working formula 

derived from that model on the limit transitions. In the limiting cases, with a porosity of mp -~ 0.26 (models 

with a tetrahedral packing) and mp -~ 0.47 (models with cubic packing), many of the working formulas lead 

to physically absurd results. Thus, for example, the functional relationships for the calculations of thermal 

conductivity [7, 8] for mp= 0.26 yield a value of k = ~o for the effective thermal conductivity; in [4, 7, 9-12], 

as m s -- i, we are told that k < 0 or )t = 0, or we are given a positive but physically invalid result. For 

the case in which kp/k s = 1 we should expect k = k s = kp. However, the working formulas from [4, 7~ 

9, ii-13] do not yield the anticipated result. All of the formulas derived from models of noncontacting in- 

clusions of any shape, distributed through the matrix, with kp = 0 yield k = 0, which contradicts the experi- 

mental data. Let us draw attention to another two important factors - the isotropicity of the model and its 
physical stability, factors virtually not touched upon in the above-cited surveys [1-6]. The random nature 

of the structure in real granular systems determines the isotropicity of their properties. This fact must 
be borne in mind in devising ordered models of a granular system, in choosing the form of its symmetry, 

and in selecting the "elementary cell," for which we undertake the mathematical description of the process 
within the volume of that cell. Isotropicity for the properties of the granular system can be achieved in 

~The coefficient of generalized conductivity will subsequently be understood to refer to any of the coeffi- 
cients of thermal or electrical conductivity, to the permittivity or to magnetic permeability. 
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Fig. 1. Diagram relat ing to the new model of the granular  
sys tem:  a) schematic  representa t ion of the s t ructure  of real  
g ranular  mate r ia l ;  b) stable model with spherical  grains 
in the form of a complex second-o rde r  s t ruc ture .  

two ways: a) by the construction of an isotropic elementary cell; b) by the use of an anisotropic elementary 
cell, with subsequent analytical averaging of its properties in all directions. 

2.  T h e  S t a b i l i t y  o f  M o d e l s  o f  G r a n u l a r  S y s t e m s  

The most  frequently used models  of granular  sys tems  in the form of spher ical  par t ic les  with any 
ordered  packing are  s t r ic t ly  stable only for a single specific value of the component volume concen t ra -  
tion (for example,  mp -~ 0.26 for te t rahedral  packing, mp -~ 0.47 for cubic packing, etc.) .  It is impossible to 
substantiate the stability of models  of granular  sys tems  in the form of noncontacting inclusions of any shape 
(the solid component),  distr ibuted within the gas component [3, 7, 8, 10-13]. These models are  suitable, 
more  likely, for the descript ion of aerosol  s t ructure  (smokes and fogs)�9 

We can cite the following reasons  which, in our opinion, par t ia l ly  explain the stability of real  mono-  
d isperse  granular  sys tems ,  when their poros i ty  differs f rom the theoret ical  values: the combined packing 
(individual segments  of the sys tem are formed by various types of packing); deviations in the shape of real  
par t ic les  f rom that of the s implest  geometr ic  f igures and the existence of mic ro i r r egu la r i t i e s ;  the existence 
of a more  complex sys tem s t ructure  formed by segments  with a dense grain packing and a space lattice 
of l a rge r  voids,  penetrat ing the entire volume of the granular  sys tem.  

It is natural  to assume that in real  granular  mate r ia l s  all of the above-enumerated  three factors  
apply�9 

1) The presence  of combined packing (a combination of te t rahedral  and cubic packing, or  others)  
provides  a substantiation of the stabili ty of a model with spherical  grains only for  a nar row range of v a r i a -  
tion in poros i ty  f rom mp -~ 0.26 to mp -~ 0.47. With a poros i ty  of mp > 0.47 no manner  of ordered  packing 
for  the spherical  par t ic les  in contact resul ts  in a physical ly stable model and the separate  grains seemingly 
float in space.  

2) Measurements  of poros i ty  for  real  g ranu la r  mate r ia l s  with grains of var ious  configurations 
(spheres,  cy l inders ,  cubes,  el l ipsoids of revolution, etc.) demonst ra ted  that the poros i ty  of such sys tems  
depends weakly on par t ic le  shape, and the mic ro i r r egu la r i t i e s  have virtually no effect on the poros i ty  of 
the granular  sys tem [1, 7]. Consequently, deviations in grain shape f rom the spherical  and the existence of 
m ic ro i r r egu l a r i t i e s  cannot serve  as  a basis  for the stability of granular  sys tems  in the case of high poros i ty .  

3) Direct  observat ion of var ious granular  sys tems  by means of a binocular microscope  makes pos -  
sible schemat ic  two--dimensional representa t ion  of s t ruc ture  (see Fig. la) .  It can be seen that the granular  
sys tem is formed by a "skeleton," consist ing of a d isordered  but re la t ively dense grain packing (a f i r s t -  
o rde r  s t ructure)  and l a r g e r  voids, penetrat ing the skeleton and forming - together with the skeleton - a 
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Fig. 2. Investigation of heat transfer in the elementary ceil: 
a) selected form of the elementary cell in tetrahedral pack- 
ing; b) the one-third of the elementary cell under considera- 
tion; c) circuit connecting the thermal resistances of the in- 
dividual parts of the cell. 

s t r u c t u r e  with mutual ly  pene t ra t ing  components  (a s e c o n d - o r d e r  s t ruc ture ) .  Such a s t ruc tu re  can actual ly  
exhibi t  s tabi l i ty  ove r  the en t i re  range of va r ia t ion  in poros i ty .  

The f i r s t  s table  models  sui table for  descr ip t ion  of g r a n u l a r - s y s t e m  s t r u c t u r e s  were  p roposed  in [14- 
16] and r ep re sen t ed  modif icat ions of s t ruc tu re  models  with mutual ly  pene t ra t ing  components .  The s h o r t -  
coming of these models  is the rough schemat iza t ion  of the c lea rance  geome t ry  between the gra ins  and the 
fact  that  the gra in  shape is a function of poros i ty ,  which resu l ted  in substant ia l  d is tor t ion  of gra in  shape for  
high po ros i t i e s  mp > 0.7). 

The e f for t  to e l iminate  the drawbacks  in the models  [14-16] lead to the development  of a new stable 
model  for  g ranu la r  and s in te red  m a t e r i a l s ,  based on the impor tan t  a s sumpt ion  that the effect ive the rma l  
conduet ivi t ies  of s y s t e m s  with d i so rde red  and o rde red  skele tons  a re  equal to each  other ,  provided the c o m -  
ponent volume concent ra t ions  and the i r  coeff ic ients  of the rma l  conductivity a r e ,  r e spec t ive ly ,  equal.  The 
modeI  of the g r a nu l a r  s y s t e m  in the fo rm of a s e c o n d - o r d e r  s t ruc tu re  is stable over  the en t i re  range of 
va r i a t ion  fo r  the po ros i ty  of rea I  g r anu l a r  s y s t e m s  and because  of cubic s y m m e t r y  it is i so t ropic .  

A genera l  method was p roposed  in [14] to de te rmine  the effect ive the rma l  conductivi ty of h i g h e r -  
o r d e r  s t r u c t u r e s  by succes s ive ly  reducing these to f i r s t - o r d e r  s t r u c t u r e s .  We wiI1 apply this method to 
the p r o b l e m  under  cons idera t ion .  In the f i r s t  s tage ,  we de te rmine  the the rmaI  conductivity Xsk of the sk e l e -  
ton f r o m  the known values  for  the t he rma l  conductivity k i of the components ,  the poros i ty  rusk, and the 
nature  of i ts  s t r u c t u r e ,  i .e . ,  

~sk= fi (~s, ~p, rusk). (1) 

The fo rm of the functional re la t ionship  (1) is governed by the nature of the packing and g ra in  shape.  
K the skele ton the rma l  conductivity for  the f i r s t - o r d e r  s t ruc tu re  is de te rmined  (we will show how this is to 
be done l a t e r  on), the effect ive t he rma l  conductivity for  the en t i re  g ranu la r  s y s t e m  (the s e c o n d - o r d e r  s t r u c -  
ture)  is ca lcula ted  f r o m  the fo rmu la s  for  s t r u c t u r e s  with mutual ly  pene t ra t ing  components  [14], and namely  

X : X s k [ C ~ + v 2 ( l - - @ 2 ~ -  2v2Q(1--c2) ] ~p 

Here  c 2 = A a / L  2 is the g e o m e t r i c  p a r a m e t e r  of the model ,  a s soc ia ted  with the volume concentra t ion mp2 
of the gas component  in the s e c o n d - o r d e r  s t ruc tu re  by the equation 

= 3cg + i, (3) 

whose solution is given in [17, 181. 

The p r o b l e m  can be r ega rded  as  solved,  if we know the fo rm of the functional re la t ionship  (1) and the 
method of de te rmin ing  the po ros i ty  (rusk) of the f i r s t - o r d e r  s t ruc tu re  and (mp2) of the s e c o n d - o r d e r  s t r u c -  
tu re .  If we denote the overa l l  po ros i t y  mp,  it is not difficult  to es tab l i sh  the re la t ionship  between rap, rusk, 
and mp2, i .e . ,  

%2 = (rod - -  msk~ (1 - -  rusk) -1. (4) 
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Fig. 3. Schematic representation of streamline distribution for flows QI and Q2: a) in the longitudinal 
cross section of the elementary cell, through the point of contact; b) in the thermal model. 

Fig. 4. Diagram for the calculation of the thermal resistance R 5 (schematic representation of space be- 
tween grains). 

Testing the functional relat ionship (2) for  passage to the l imit  leads to obvious resu l t s :  1) m p =  1, rap2 = 1, 
k = k p ; 2 )  mp =rusk ,  rap2= 0, k = k s k ; 3 )  u 2= 1, k = k s k = k p .  Let  us now Lurn to the determinat ion of the 
coeff icient  of thermal  conductivity for  the skeleton. 

3 .  T h e r m a l  C o n d u c t i v i t y  o f  t h e  S k e l e t o n  

Let  us assume that the skeleton is formed of grains of the s implest  spher ical  shape, with te t rahedra l  
packing. We will examine the t r ans fe r  of heat in the skeleton,  but not through the ent i re  volume of the 
skeleton; r a the r ,  we will cons ider  the "e lementary  ce l l , "  whose shape in the te t rahedra l  packing depends on 
the chosen d i rec t ion  of the heat flow. In the te t rahedra l  packing, because of isotropici ty ,  all d i rec t ions  are  
equivalent  and we will the re fore  examine the t r ans fe r  of heat in the d i rec t ion in which the e lementa ry  cell  
has the form of a p rope r  hexagonal p r i s m  (Fig. 2a). The bases  of the p r i sm  in this case are  i so thermal ,  
while the side facets  a re  adiabatic planes.  The axial s y m m e t r y  of the e l ementa ry  cell  enables us to study 
the transfer of heat in one third of the cell (Fig. 2b). The circuit showing the connection of the heat resis- 
tances for the individual segments of the elementary cell is shown in Fig. 2c and corresponds to the fol- 
lowing proposed physical pattern of the heat-fLow distribution. The transfer of heat between the isothermal 
bases is accomplished by means of three flows. The flow QI, passing exclusively through the solid corn- 
portent (see Fig. 3a) enters into one sixth of the spherical grain through the area Sin = i/3~rr~p h, passing 
through the constriction formed by the point of contact with the area Sf = 7ra 2, and then passing through the 
second one sixth portion of the sphere, it reaches the bases. The flow Q2 enters the elementary cell through 
the same area Sin and, passing successively through the solid particle, the annular gas space between the 
grains, and the other particle, it reaches the bases of the prism. The flow Q3 passes through the elementary 
cell, following the open pores . The thermal resistances of the individual segments of the model are found 
in approximate terms. For this we replace the individual segments of the elementary cell by bodies of 
simpler shape, and namely: we replace the spherical part with cylinders having a height of 0.81 rsp h with the 
same values for the areas of the inlet and points of contact, and the open pores on the remaining area are 
shown in the form of a flat wall (Fig. 3b). Let us examine the means of determining individual thermal 
resistances for such a model. 

The expression for the thermal resistance of the cylinder with an axial point of entry is taken from 
[14], i.e., 

O,81r@h_ 0.81 a 
R =R~o ~b, Rio-- ~s ~a2 ~'s ~y2rsph' Y-- rsph' 

rcy l  n_2iTl n z  (5) 
~cc]  1 -  16 z-2 n~=l I '  1/3Y hec) ( h ~c ) [  It ~ c  ) ' "  h-~ec" 
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( 1 - - K i  nn-h77~_]I~ n n ~ , 3 g  , n = 2 m + l , m = O ,  1, 2,... 
ec  / 

(6) 

The func t ion  ~ i s  r e l a t e d  to the d e t e r m i n i n g  p a r a m e t e r s  y and r c y l / h e c  in g r a p h i c a l  f o r m  in [14]. F o r  
s m a l l  p o i n t s  of c o n t a c t  (y - 5 �9 10 -2) the  func t ion  r can  be a p p r o x i m a t e d  by the r e l a t i o n s h i p  

rcyI/ m 1,2y. (7) 
@ ~,~y, ,%o) 

The t h e r m a l  r e s i s t a n c e  R 4 of the c y l i n d e r  to the f low Q2 e n t e r i n g  the gas  s p a c e  t h rough  the a n n u l a r  spo t  is  
d e t e r m i n e d  a p p r o x i m a t e l y  in ana logy  wi th  (5) in the f o r m  R 4 = R40qo. The funct ion  q0(q-3y, r e y l / h e c )  c h a r a c -  
t e r i z e s  the change in the resistance R40 as a result of current leakage through the entire cross section. For 

this we present the heat flow q flowing through a uniform cylinder of length L between the isotherms T 2 and 

T i in the following form (the superposition principle): 

q = q~ + qz = ~  Ti), (8) 

and here qt = GI(T2 - Ti) is the flow of heat passing through the cylinder with the axial point of entry and 

adiabatic walls; q2 = G2(T2 - TI) is the flow of heat passing through the cylinder with the annular point of 

entry. Since the temperature difference (T 2 -TI) is identical, it follows from (8) that 

= cq + %. (9) 

The conductivity of the individual segments is expressed in the form 

= ksSe L-% ~' = ;~s Sf L7~; % = ksSskL7L (10) 

Having presented the effective length of the streamlines 

tion of (8)-(10) it is not difficult to find the relationship between the functions �9 and 

S c y l -  S f  

(P - Scy-i- Sf q)-~ 

and to ob t a in  the e x p r e s s i o n  fo r  the t h e r m a l  r e s i s t a n c e  

0,81rsph 
R~ = R,o~  - -  Zs,~ x (rc2v] - a ~ ) 

The thermal contact resistance is determined from the 

]Imr 
R z -  ~,sSmc 

in the form L i = Lr and L 2 = L~0, with considera- 

I - -  y~q)-I 
(ii) 

R 4 

2,43 
r = ~ n  (1--3y2)rsph r 

f o r m u l a  fo r  a f i a t  w a l l ,  i . e . ,  

2 k s ~9 rsp h 

(12) 

(13) 

The thermal resistance of the space between the grains is made up of the parallel-connected resistance R a 

of the spherical portion and the resistance R 6 of the fiat mieroclearanee of height hmr in the region of 

nominal contact with the area Smc = S n - Sf 

hmr h- b 
= , z = - - .  (14) 

/?8 = ZpSm c )~p~ (z 2 __ y~) rsph rsph 

The  n o m i n a l  c o n t a c t  a r e a  S n = rrb 2 i s  u s u a l l y  e v a l u a t e d  on the b a s i s  of the H e r t z  f o r m u l a  fo r  e l a s t i c  
s p h e r e s  [6, 7]. The  a c t u a l  c o n t a c t  a r e a  d e p e n d s  on the m a g n i t u d e  of the e x t e r n a l  l oad ,  the g e o m e t r y  of 
the mieroroughnesses, and the strength characteristics of the solid components. In the case of free flow 

Sf/S n = 1 �9 10-2-1 �9 10 -5. The height of the mieroroughnesses for granular materials with an untreated sur- 
face generally is hmr/rsp h = 1 �9 10-2-1 �9 10 -4 [6, 7]. 

The thermal resistance R 3 of the spherical portion of the space is evaluated in approximate terms, 

dividing this space concentrically with annular adiabatic surfaces, as shown in Fig. 4, i.e., 

Ra 

R a -  2 i i ~ 
(9 p 0 b 

L [o.815-j t-z2+(l+h)in 1+~-o.s15 ]< (15) 
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The thermal resistance R 5 of the open gas pores is given approximately in the form 

3 
R5 = ~ s~ -~r~ h" (16) 

Having determined the values of the thermal resistances for the separate parts of the elementary 

cell, we can derive the expression for the equivalent or effective thermal resistance R of the entire circuit. 

The thermal resistance of the elementary cell can be expressed differently, in terms of its geometry and 

its effective thermal conductivity, i.e., 

3hec 3hec 
RcY 1 -= ;kcyl Stc -- ~cylStc (17) 

Having equated  the e x p r e s s i o n s  for  the t h e r m a l  r e s i s t a n c e s  of  the e l e m e n t a r y  ce l l ,  ca lcu la ted  in a c c o r d a n c e  
with the c i r cu i t  shown in (Fig.  2) and on the bas i s  of (17), let us d e t e r m i n e  the ef fec t ive  t he rma l  conduct iv i ty  
of the e l e m e n t a r y  cel l  and,  consequen t ly ,  of the en t i r e  ske le ton .  The theo re t i ca l  fo rmula  has  the f o r m  

/ , sk= 2 . 2 4 y ~  [ h 2.43r ] - '  
;~-~- 0 .81r  + 2 . 2 4  v~(z2 --ff~)+2~@+ t _ 3 y 2  +8.9.10-2vz, 

qo = 0 .815--  ] / 1 - - z  ~ + (1 +-/~) In 
1 + h - -  0,815 

l + h - - V  1 - - z  2'  v2 = ~'s 

(18) 

and sa t i s f i e s  the pa s sa ge  to the l imi t .  

4. The Thermal Conductivity of the Component 

Filling the Pore 

If the pores are filled with the gas component, its thermal conductivity is composed of the molecular 

and the radiation components and depends on the pore size [17], i.e., 

)~p = Epm+ ~pr (19) 

The m o l e c u l a r  componen t  k p m  is ca lcu la ted  [10] on the bas i s  of the fol lowing f o r m u l a :  

~'pm = ~o [1 + B/HSI] -1 , 
(20) ( B = 4 7 ( 1 + ~ ) - 1  p r - l ( 2 _ a 0 a ~ - l A ~  1 + H 0. 

The a v e r a g e  po re  s ize  in the ske le ton  (the f i r s t - o r d e r  s t r u c t u r e )  is defined as  the mean  in tegra l  th ickness  
of the s tate  between the g r a in s  o n t h e a r e a  7r(r~eyl - a  z) (see Fig.  4) and is equal  to 61 = (0.09 + h). 

By examin ing  the g e o m e t r y  of the e l e m e n t a r y  cel l  in a s e c o n d - o r d e r  s t r u c t u r e ,  we can  find the func -  
t ion with which to ca lcu la te  the a v e r a g e  pore  s ize  in the s e c o n d - o r d e r  s t r u c t u r e .  F r o m  visua l  obse rv a t i o n s  
of v a r i o u s  g r a n u l a r  m a t e r i a l s  we see that  2d < /x 2 < 5d (see Fig .  lb) .  F o r  the ca lcu la t ions  we will  take 
the ave r age  value A z = 3d, in which  ease  

5a = 2 (L z -  ha) = 6d (c~ 1 --1). (21) 

To evalua te  the rad ia t ion  componen t  in the f i r s t - o r d e r  s t r u c t u r e  (the skele ton)  we will  use [1] the fol lowing 
r e l a t ionsh ip :  

~"/I = 2e~ CoTa6r (2 2) 

In calculating the radiation component in the second-order structure we will use the method proposed in 
[19]. We will regard the entire granular system as a continuous isotropic medium with an integral absorp- 

tion coefficient c~, a thickness l, and a skeleton emissivity of ~2 -~ I. In this case, 

( T )  ~ Y  (23) ~'12 = 0,3 ~ 

The p a r a m e t e r  Y can be eva lua ted  with p rov i s ion  for  the a t tenuat ion  of r ad ia t ion  flux by us ing the 
g r aph i ca l  r e l a t ionsh ip  Y = f(T, ~ 2), g iven in [19]. F o r  I- > 10, which is c h a r a c t e r i s t i c  of m o s t  g r a n u l a r  m a -  
t e r i a l s  whose  p o r o s i t y  m p <  0.8, we can  a s s u m e  Y ~ 1. 
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Comparison of the theoretical values for the effective thermal conductivity of granular systems over 

a broad range of variation in the determining parameters (ks, kp, rap, T, H) with experiment confirms 
the possibility of using the new model and the functional relationship (18) to predict the properties of gran- 
ular systems. A detailed analysis of (18) and a detailed comparison of the calculation results with ex- 

perimenta data will be published in subsequent reports. 

mp 

kp  

k s  

k s k  
rusk 

mpz 

A 2 

L2 

rsph 
6~ 

rcy I = rsph/4-3 
Ii 
KI 

hmr, h = hmr/rsp h 
b 

Sic 

hec = 1.62rsp h 

kpm and kpr 

~0 

= C p / C  v 
P r  

t/1 
A ~  

S 
d 

Co 

a = Sab s / (Sc2 - L2) 
Sab s = 2(L 2 - A2)A 2 + A z 

Scz 
T = ~ l  

NOTATION 

is the total volume concentration of the gas component in the pores of the gran- 
ular system; 
is the effective thermal conductivity; 
is the thermal conductivity of the gas component in the pores; 
is the thermal conductivity of the solid component; 
is the thermal conductivity of the skeleton; 
is the volume concentration of the gas component in the skeleton (first-order 
structure); 
is the volume concentration of the gas component in the second-order struc- 
ture ; 
is half the thickness of the skeleton link in the second-order structure; 
is the dimension of the elementary cell in the second-order structure; 
is the radius of the spherical grains; 
is the radius of the point of actual contact; 
is the radius of the cylinder whose cross-sectional area is 7rr2sph/3; 
is the first-order Bessel function of the first kind and of imaginary argument; 
is a first-order McDonald function; 
are, respectively, the absolute and relative heights of the microroughness; 
is the radius of the nominal contact area; 
is the area of the elementary cell, equal to the area of the hexagon described 
about the grain; 
is the height of the elementary cell; 
are, respectively, the molecular and radiation components of the coefficient 
of thermal conductivity in the pores; 
is the thermal conductivity of the gas at atmospheric pressure, H 0 = 760 mm 
Hg; 
is the average dimension of the i-th pore; 
is the ratio of isobaric and isochoric heat capacities; 
Is the Prandtl number for the gas in the pores; 
is the accommodation factor of the gas; 
is the molecular mean free path of the gas at an infinitely high temperature; 
is the Sutherland constant; 
is the dimension of the spherical grains; 
is the emissivity of the grain surface; 
is the Stefan-Boltzmann constant; 
is the integral coefficient of radiation absorption; 
is the area of radiation absorption in the elementary cell of second-order 
structure; 

is the area of the elementary cell in the second-order structure; 
is the optical thickness of the medium. 
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